
ELSEVIER Signal Processing 43 (1995) 55-63 

SIGNAL 
PROCESSING 

Inverse filter criteria for blind deconvolution and equalization 
using two cumulants 

Chong-Yung Chi*, Mei-Chyn Wu 

Department of Electrical Engineering, National Tsing Hua University. Hsinchu, Taiwan, Republic of‘ China 

Received 17 March 1994; revised 14 July 1994 and 28 November 1994 

Abstract 

Cumulant (higher-order statistics) based inverse filter criteria maximizing J,,, = / C,l’/IC,I”, where m # r and C, (C,) 
denotes the mth-order (rth-order) cumulant of the inverse filter output, have been proposed for blind deconvolution and 
equalization with only non-Gaussian output measurements of an unknown linear time-invariant (LTI) system. This 
paper shows that the maximum of J,,,, associated with the true inverse filter of the unknown LTI system, exists only for 
r to be even and m > r, otherwise J,,, is unbounded. The admissible values for (r, m) = (2s, 1 + s) where I > s 2 1 include 
(2,3), (2,4) and (4,6) proposed by Tugnait, Wiggins, Shalvi and Weinstein in addition to the new ones such as (2, S), (2,6) 
and (4,5). Some simulation results associated with the inverse filter criteria J,,, with the admissible values for (I, m) are 

then provided. Finally, we draw some conclusions. 

Zusammenfassung 

Zur blinden Entfaltung und Entzerrung unter nicht-gaugschen Empfangssignalen bei unbekannten linearen 
zeitinvarianten Systemen (LTI) wurden Kumulanten-basierte (higher order statistics) Kriterien fur inverse Filter 
vorgeschlagen, die J,,, = 1 C,l’/l C,l” maximieren, wobei m # r und C, (C,) Kumulanten m-ter (r-ter) Ordnung des 
Ausgangssignals des inversen Filters bezeichnen. Diese Arbeit zeigt, da13 das Maximum von J,,,, verbunden mit dem 
wahren inversen Filter des unbekannten LTI-Systems, nur fur gerade r und m > r existiert, andernfalls ist J,,, unbe- 
grenzt. Die zulbsigen Werte fur (r, m) = (2s, 1 + s), mit 1 > s > 1, enthalten (2,3), (2,4) und (4,6) wie von Tugnait, Wiggins, 
Shalvi und Weinstein vorgeschlagen und weiterhin einige neue Werte wie (2,5), (2,6) und (4,5). Es werden einige 
Simulationsergebnisse verbunden mit den inversen Filter Kriterien J,,, mit zullssigen Werten fur (r, m) wiedergegeben. 
Die Arbeit schliegt mit eine Konklusion. 

Rbumi 

Des criteres de filtre inverse bases sur les cumulants (statistiques d’ordre superieur) maximisant J,., = 1 C(m)I’/lC(r)I”, 

ou m # ret C, (C,) denote le cumulant de m-ieme ordre (r-i&me ordre) de la sortie du filtre inverse, ont Cte proposees pour 
la deconvolution et l’egalisation aveugles, connaissant seulement des mesures non gaussiennes de la sortie dun systeme 
lineaire invariant dans le temps (LIT) inconnu. Cet article montre que le maximum de J, mr associe au vrai filtre inverse du 
systeme LIT inconnu, existe seulement pour r pair et m > r, sinon J,,, est non limit& Les valeurs admissibles pour 
(r, m) = (2s, I + s) ou I > s > 1 incluent les couples (2,3), (2,4) et (4,6) proposes par Tugnait, Wiggins, Shalvi et Weinstein 

*Corresponding author. Tel.: 886-35-731156. Fax: 886-35-715971. E-mail: cychi@ee.nthu.edu.tw. 

0165-1684/95/$9.50 Q 1995 Elsevier Science B.V. All rights reserved 

SSDI 0165-1684(94)00143-X 



56 C.-Y. Chi, M-C. Wu / Signal Processing 43 (1995) 55-63 

ainsi que d’autre plus r&en@ tels (2,5), (2,6) et (4,5). Des rCsultats de simulation associCes aux critkres de filtre inverse 
J(m, r) avec les valeurs admissibles pour (m, r) sont ensuite don&. Enfin, nous esquissons quelques conclusions. 

Keywords: Inverse filter criteria; Blind deconvolution; Equalization; Cumulant 

1. Introduction 

Blind deconvolution as well as equalization is 
a quite known statistical signal processing problem 
to estimate the desired signal u(n) only with a given 
set of measurements x(n), n = 0, 1, . . . ,N - 1, 
based on the following convolutional model: 

x(n) = u(n) * h(n) + w(n) 

= f h(i)u(n - i) + w(n), (1) 

where w(n) is measurement noise and h(n) is an 
unknown linear time-invariant (LTI) system which 
corresponds to such as the source wavelet in seis- 
mic deconvolution, the channel impulse response in 
channel equalization and the vocal-tract filter in 
speech processing. A major conventional approach 
to this problem is the correlation (second-order 
statistics) based predictive deconvolution [ 11,173. 
The deconvolved signal is obtained by processing 
x(n) with a minimum-phase linear prediction error 
(LPE) filter [9,11,17], which corresponds to an 
estimate for the inverse filter of h(n) except for 
phase distortion because h(n) may not be mini- 
mum-phase in practice. In other words, LPE filters 
are blind to the phase of h(n). Moreover, LPE filters 
are sensitive to additive noise since correlations of 
x(n) contain noise correlations in addition to cor- 
relations of the noise free signal u(n)*h(n). Recently, 
higher-order ( > 3) statistics (HOS) [14,15], known 
as cumulants, have been considered in various sig- 
nal processing areas where x(n) is non-Gaussian 
and measurement noise w(n) is Gaussian with un- 
known statistics, partly because cumulants of x(n) 
can be used to extract not only the amplitude 
information but also phase information of h(n) and 
partly because higher-order cumulants of Gaussian 
noise w(n) are zero. 

Assume that u(n) is an estimate for the inverse 
filter of h(n) and that e(n) is the output of the filter 

u(n) in response to noisy measurements x(n), i.e., 

e(n) = x(n) * v(n). (2) 

The goal of cumulant based inverse filter criteria 
[l-7,16,18-20] is to find the optimum o(n) from 
higher-order cumulants of e(n) such that v(n)*h(n) 

approximates cd(n - z) where CI is a nonzero scale 
factor and z is an unknown time delay. Thus, 
the associated inverse filter output signal e(n) x 

cw(n - z) provides sufficient information about the 
driving input of the unknown LTI system h(n). As 
mentioned above, when v(n) is an LPE filter and 
h(n) is nonminimum-phase, the predictive decon- 
volved signal e(n) x w(n)*h’(n) for this case, where 
h’(n) is an all-pass system, no longer provides accu- 
rate information about u(n) even when the signal- 
to-noise ratio (SNR) is quite high. 

A class of cumulant based inverse filter criteria 
[16,18-201 finds the optimum inverse filter u(n) by 
maximizing an objective function with the follow- 
ing form: 

(3) 

where m # r, m 2 2, Y > 2 and C, (C,) is the mth- 
order (rth-order) cumulant of e(n), i.e., 

C, = Cum[xl = e(n), x2 = e(n), . . . ,x, = e(n)], 

(4) 

where Cum [x1, x2, . . . , x,] denotes the joint cumu- 
lant of random variables x1,x2, . . . ,x, [14,15]. 
Note that J,,, uses only two cumulants with differ- 
ent orders. For instance, Wiggins [20] proposed 
an inverse filter criterion by maximizing J = 

E Ce”(4lAE Ce2 W2, which is related to J,,, by 
1 J - 312 = J2,4. Shalvi and Weinstein [16] pro- 
posed an inverse filter criterion by maximizing 1 C4) 
subject to the constraint E[e2(n)] = ECU’(n)]. 
Tugnait [18,19] also proposed inverse filter criteria 
by maximizing J2,3 or J2,4, or J4,6. However, for 
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other choices of I and m, it is still unknown whether 
maximizing J,,, can lead to the inverse filter of h(n). 
Chen and Chi [l] and Chen et al. [4] proposed 
some inverse filter criteria using a slice of cumu- 

lants of e(n). Chi and Kung [6,8] estimated the 
inverse filter v(n) by maximizing a single cumulant 

IC,I for m 3 3 when h(n) is an all-pass system. 
In this paper, we show that maximizing the ob- 

jective function J,,, given by (3) is applicable only 
for some certain choices of r and m which lead to 
new inverse filter criteria in addition to the 

aforementioned existing inverse filter criteria as 
special cases of the admissible Y and m. Section 
2 presents the admissible values for cumulant or- 
ders r and m required by the inverse filter criteria 

J l,m. Then some simulation results are provided in 
Section 3. Finally, we draw some conclusions. 

2. Admissible cumulant orders for 
the inverse filter criteria Jr., 

Assume that x(0),x(l), ,x(N - 1) are given 
noisy measurements generated from the convolu- 
tional model given by (1) with the following as- 
sumptions: 

(Al) The unknown LTI system h(n) is causal 
stable with either minimum phase or nonminimum 
phase and a stable inverse filter h,(n) of h(n) exists. 

(A2) The driving input u(n) is real, zero-mean, 
stationary, independent identically distributed 
(i.i.d.) non-Gaussian with variance ai and mth-or- 

der cumulant y,,, where m 2 3. 

(A3) Measurement noise w(n) is Gaussian with 

unknown statistics. 

(A4) The input u(n) and the noise w(n) are statis- 
tically independent. 

Assume that the inverse filter estimate v(n) for 
h,(n) is a stable filter. Then the inverse filter output 
e(n) given by (2) can be expressed as 

e(n) = u(n) * g(n) + w’(n), (5) 

where ru’(n) = tic’ is also a Gaussian noise 
sequence since w(n) is Gaussian by (A3) and g(n) is 
also a stable filter given by 

g(n) = h(n) * z(n). (6) 

The admissible cumulant orders for the inverse 

filter criteria given by (3) are described in the fol- 
lowing theorem. 

Theorem 1. Assume that x(n) is the noisy signal 

generated from the model given by (1) under the 

previous assumptions (Al)-(A4). Then the following 

two statements are true: 

(Sl) J,,,(v(n)) is unbounded except for the case 

that r = 2s (i.e., r is even), 

I > s > 1. Moreover, 

m = 1 + s > r where 

lYl+S12s 
max{Jl,,t+,(v(n))} = ~j,. (7) 

2s 

(S2) The optimum g(n) associated with Jz,,t+,(6(n)) 

= maxi J2s,I+,(v(n))] where I > s > 1 is given by 

g(n) = r6(n - T), (8) 

where x # 0 is a scale factor and 7 is an unknown 

integer,,fo> the two cases that s = 1 with SNR = cz 

and s > 1 with finite SNR. 

The proof for Theorem 1 is based on the well- 

known Cauchy-Schwarz inequality 

and the following lemma. 

Lemma 1. Let a(n) be a nonzero sequence with,finite 

I,, norm {C,“= x‘ I a(n)lP ] ‘jr’, then 

{ fijX IaW)” G { .$., 14~~15}1“ (10) 

where 1 and s are positive integers and 1 > s. 

The proof of Lemma 1 and that of Theorem 1 are 
given in Appendices A and B, respectively. 

Some worthy remarks for the inverse filter cri- 

teria Jzs,t +s are summarized as follows: 

(Rl) For (s,I) = (1,2), (s,l) = (1,3), and (s,/) = 

(2,4), ~~~~~ +s reduces to Tugnait’s inverse filter cri- 

teria J~,3,52,4, and J4.6, respectively. For any other 

choices of (s, 1) Jzs.l+s such as J2.s. J2.h and J4.5 are 
new. 
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(R2) In practice, the two cumulants CZs and 
CI +s of e(n) required by JZs,r + s must be replaced by 
the corresponding sample cumulants CZs and z‘l+s 
calculated from e(n), n = 0, 1, . . . , N - 1. However, 
CZs and C,,, are known to be consistent estimates 
[15] for CZs and Cl+s, respectively. Therefore, the 
optimum estimate r?(n) is also a consistent estimate 
for hi(n) except for a scale factor and an unknown 
time delay. 

Next, let us present how we find the optimum 
inverse filter f?(n) associated with the inverse filter 
criteria JZs,l +s with finite data set {x(O), x(l), 
. ..) x(N - l)}. The inverse filter u(n) is assumed to 

be a causal FIR filter of order equal to L. Then the 
inverse filter output e(n) given by (2) can be ex- 
pressed as 

e(n) = u’x,, (11) 

where u and x, are (L + 1) x 1 column vectors given 

by 

u = [u(O), u(l), . . . ) u(L)-JT (12) 

and 

X” = [x(n), x(n - l), . . . ,x(n - L)]T, (13) 

respectively. It can be easily seen that the inverse 
filter criteria JZs,l+s where I > s 2 1 are highly non- 
linear functions of u since sample cumulants 
CZs and C,, s are nonlinear functions of u. Thus, one 
has to resort to iterative numerical optimization 
algorithms for finding the optimum u. A gradient 
type numerical optimization algorithm is used to 
search for the optimum inverse filter estimate fi. At 
the ith iteration, di is updated with 

fii = fri-1 + pgi-1, (14) 

where p is a positive constant and gi- 1 is the 
gradient of J2s,l+s with respect to u for u = 8i-1. 

The detailed calculation for gi- 1 involves only 
lengthy and tedious algebraic manipulations which 
are therefore omitted here. However, when updat- 
ing fii by (14) results in Jzs,l+s(fii) < J2s,l+s(fii-i), 
one can continually decrease p by p/2 until 
J 2s,t+s(5i) > J 2s,l+s(cii-1). As other numerical op- 
timization algorithms, an initial condition for 5, is 
needed to initialize the above numerical optimiza- 
tion algorithm. For instance, a minimum-phase 

LPE filter can be used as the initial condition for 
5,,. Next, let us present some simulation results to 
justify that the inverse filter criteria Jzs,l+s where 
I> s > 1 can be used for the estimation of the 
inverse filter of the unknown LTI system h(n) and 
for deconvolution. 

3. Simulation results 

In this section, two simulation examples are to be 
presented to support the proposed unified class of 
inverse filter criteria Jls,l+s where 1 > s 2 1 pre- 
sented in Theorem 1. The first example is a perfor- 
mance test to the new inverse filter criterion J2,5 
(i.e., s = 1 and I = 4 in J 2s,l +s). The second example 
is seismic deconvolution using the new inverse filter 

. . 
criterion J2,6 (i.e., s = 1 an E = 5 in Jzs,l+s). 

Example 1 (Performance test). In this example, the 
driving input u(n) used was a zero-mean, i.i.d. Ex- 
ponential random sequence with variance 0,” = 1, 
skewness y3 = 2, kurtosis y4 = 6 and fifth-order 
cumulant ys = 24. The unknown LTI system h(n) 
used was a nonminimum-phase second-order 
autoregressive moving average (ARMA) system 
with the transfer function (taken from [7]) given by 

H(z) = 
1 - 2.72-l + O.~Z-~ 

1 + 0.1z-’ - o.12z-2’ (15) 

Synthetic noisy data x(n) of two different data 
lengths (N = 2048 and 4096, respectively) were gen- 
erated from (1) for two different SNRs (10 dB and 
2OdB) and noise w(n) being white Gaussian. 
The objective function J,,, given by (3) with 
(r,m) = (2,5) was used to estimate the inverse 
filter u(n) which was assumed to be a causal FIR 
filter of order L = 16. An initial condition 
u = [O, . . ..O.l,u,(l), . . . ,ut,(8)lT was used to in- 
itialize the associated gradient type optimization 
algorithm for searching for the optimum 5 where 

{l~ub(l)~ . . . , q,(8)} were the coefficients of an 
eighth-order LPE filter obtained by the well- 
known Burg’s algorithm [9]. 

The simulation results over 30 independent runs 
associated with J2,5 for (N = 2048, SNR = lOdB), 
(N = 4096, SNR = 1OdB) and (N = 4096, SNR = 
20dB) are shown in Fig. 1. Note that each inverse 
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filter estimate t?(n) obtained from each independent 
run was normalized by 116 11 = 1 and the associated 
unknown time delay was artificially removed. 
From Fig. 1, one can see that the estimated inverse 
filter is basically unbiased. Note that the estimated 
inverse filter has a larger variance for N = 2048 
than for N = 4096 (see Figs. l(a) and (b)) and that 
the variance of the estimated inverse filter for 
SNR = 1OdB is similar to that for SNR = 20dB 
(see Figs. l(b) and (c)) for this case. Nevertheless, 
these simulation results justify that J2s.l+s where 
1 > s > 1 can be used to estimate the inverse filter of 
an unknown nonminimum-phase LTI system. 

Because yj = 2 # 0, we also performed the same 
performance test to Tugnait’s criterion J2,3 with the 
same simulation data. Simulation results show that 
the performance of J2,3 is superior to that of the new 
criterion J2,s for this example. With no doubt, when 
J2,3 is sufficient in certain practical applications, 
Jr., for higher admissible r and m such as J2,5 are 
redundant. Nevertheless, we would like to empha- 
size that when cumulants of measurements are small 
or close to zero for lower r and m such as J2,3 and 
J 2q4, the inverse filter criteria J,., only for higher 
admissible r and m such as J2,5 can be considered for 
the estimation of inverse filter. 

Example 2 (Seismic decondution). In seismic de- 
convolution, a source wavelet h(n) which is causal 
but not necessarily minimum-phase is input to the 
Earth and the received noisy data can be modeled 
as (1) where u(n) is a reflectivity sequence of the 
local geology and w(n) is measurement noise. Be- 
cause the reflectivity sequence u(n) is generally 
a non-Gaussian sparse spike train with random 
amplitudes, Kormylo and Mendel [lo, 12, 131 pro- 
posed a Bernoulli-Gaussian (B-G) model for 
a sparse reflectivity sequence as follows: 

u(n) = +).4(n), (16) 

Fig. 1. Simulation results associated with J, 5 for Example 1. 
The average (dashed line) as well as f one st‘andard deviation 

(dotted lines) of 30 independent inverse filter estimates together 
with the true inverse filter (solid line) for (a) N = 2048 
and SNR = 1OdB. (b) N = 4096 and SNR = IOdB, and 
(c) N = 4096 and SNR = 20 dB, respectively. 
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where r(n) is a zero-mean white Gaussian random 
process with variance 0; and q(n) is a Bernoulli 
sequence for which 

pr L-MI = 
i 
4 q(n) = 1, 
1 - J., q(n) = 0. 

(17) 

In this example, a B-G sequence with 0,’ = 1 and 
i, = 0.1 (taken from [S, 6, S]) and a third-order 
nonminimum-phase wavelet (also taken from [S, 6, 
81) with the following transfer function, 

H(z) = 1 + O.lz-’ - 3.2725z-’ + 1.41125~-~ 

1 - 1.9z-’ + l.l525z-’ -0.1625~-~ ’ 

(18) 

were used to generate the synthetic noisy data x(n) 
of length N = 2048 for SNR = 27 dB and measure- 
ment noise w(n) being white Gaussian. 

Because y3 = 0 (skewness) and ys = 0 but 
y4 = 0.27 (kurtosis), y,=o~=;1c,?=O.l and 
y6 = 1.08 for this case, the new inverse filter cri- 
terion J2,6 was used to estimate the causal in- 
verse filter u(n) of order L = 24. The initial 
condition u = [0, . . . ,O, l,u,(l), . . . , ut,(12)lT, where 

{l,&(l), ... J&(12)) were the coefficients of a 
twelfth-order LPE filter obtained by Burg’s algo- 
rithm, was used to initialize the associated gradient 
type optimization algorithm for searching for the 
optimum 6. The obtained inverse filter estimate 
(dash-dotted line) normalized by 115 (1 = 1 is shown 
in Fig. 2 together with the true noncausal stable 
inverse filter hi(n) (solid line) also normalized by 
C,“= _a,jh,(n)12 = 1 where the unknown time delay 
between 8(n) and hr(n) was artificially removed. For 
comparison, a conventional minimum-phase LPE 
filter ur,(n) of order equal to 24 was also obtained by 
Burg’s algorithm, which is depicted by a dashed 
line in Fig. 2. Note, from Fig. 2, that i?(n) is quite 
close to the true inverse filter h,(n) but is very 
different from the LPE filter in waveshape. The 
data x(n) were then processed by the LPE filter to 
obtain the predictive deconvolved signal e,,(n) 
which is depicted by a dotted line in Fig. 3(a) for 
N = O-511 together with the true input sequence 
u(n) depicted by a solid line. One can observe, from 
Fig. 3(a), that in addition to a scale factor, each 
spike in u(n) is associated with a residual wavelet 

L 
-10 -5 0 5 10 I5 20 

Fig. 2. Simulation results for Example 2. The true non- 

causal stable inverse filter h,(n) (solid line) normalized by 

I.“= _ mJhr(n)12 = 1, the inverse filter estimate (dash-dotted line) 

associated with J2,6 where the unknown time delay was artifici- 

ally removed, and the LPE filter (dashed line) of order equal to 

24 obtained by Burg’s algorithm. 

which begins with two opposite peaks and gradual- 
ly decays. The reason for this is simply that an 
all-pass distortion remains in e,,(n) because only the 
amplitude response of nonminimum-phase source 
wavelet can be equalized by q,(n). The deconvolved 
signal e(n) (dotted line) obtained by the optimum 
inverse filter depicted by a dash-dotted line in Fig. 
2 is shown in Fig. 3(b) for N = O-51 1 together with 
the true input sequence u(n) (solid line). One can 
see, from Fig. 3(b), that e(n) approximates u(n) well 
except for a scale factor. Comparing the deconvol- 
ved signal shown in Fig. 3(a) with the one shown in 
Fig. 3(b), one can easily see that e(n) is indeed 
a much better estimate of u(n) than eb(n) because 
the phase distortion (all-pass distortion) in eb(n) 
(dotted line in Fig. 3(a)) was almost inexistent in 
e(n) (dotted line in Fig. 3(b)). The deconvolved 
signals et,(n) and e(n) for N = 512-2047 are omitted 
here since they have the same characteristics as 
those shown in Figs. 3(a) and 3(b), respectively. 
These simulation results support the fact that the 
proposed inverse filter criterion J2,6 can be used for 
deconvolution. 

As discussed in Example 1, one can surely use 
Tugnait’s criterion J,,, rather than the new cri- 
terion J2,6 for this example because y4 = 0.27 # 0. 
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Fig. 3. Simulation results for Example 2. (a) The predictive 
deconvolved signal eb(n) (dotted line) together with the true 
input signal (solid line) for N = O-511; (b) the deconvolved 
signal e(n) (dotted line) obtained by the optimum inverse filter 
associated with J,,, together with the true input signal (solid 
line) for N = O-51 1. 

This example only emphasizes the application of 
the new J2,6 to deconvolution although both 
of J2,4 and J2,6 are members of the unified class of 
J 2s.I + s where 1 > s 2 1 presented in Theorem 1. 

4. Conclusions 

We have shown that the cumulant based inverse 
filter criteria J,,, given by (3) which use an mth- 
order cumulant and an rth-order cumulant for 

blind deconvolution and equalization require r to 
be even and m > r (see Theorem 1). Therefore, these 
criteria form a family of criteria J2s,l+s where 
1 > s 2 1 and they include not only the existing 
inverse filter criteria as special cases of (I, s) but also 
new inverse filter criteria (see (Rl)). The optimum 
inverse filter associated with J2s,l+s is a consistent 
estimate (see (R2)) and can be obtained by iterative 
nonlinear optimization algorithms which can 
only guarantee a local optimum solution. Some 
simulation results were provided to support that 
J2s,l+s with I > s 3 1 is effective. 

Appendix A 

Proof of Lemma 1 

Assume that 

max{ [a(n = j > 0. 

Since max{Ia(n)I//?) = 1 and 1 > s 2 
easily infer that 

64.1) 

1, one can 

1 c=i,(y)Lnqy)I 
which further leads to 

(A.21 

Cancelling the common term fl on both sides of 
(A.3) yields 

Appendix B 

Proof of Theorem 1 

It can be easily shown [14, 151 that for either 
m = 2 with SNR = cc or m 2 3, the mth-order 

cumulant of e(n) is given by 

Gl = Ym : s”(n), 03.1) 
n=-_3c* 
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where g(n) was defined by (6). Substituting (B.l) 
into (3) gives rise to 

(B-2) 

Let us consider J,,, given by (B.2) for the following 
three cases: (Cl) m < r; (C2) m > r and r is odd; and 
(C3) m > r and r is even, respectively. 

(Cl) m c r. Let us give a counterexample to show 
that J,,, is unbounded for this case. Assume that 

v(n) = 2 LYh,(n - k), (B.3) 
k=l 

where c1 is a nonzero constant. Then 

g(n) = h(n) * v(n) = f a6(n - k) (B-4) 
k=l 

since hi(n) is the inverse filter of h(n). Substituting 
(B.4) into (B.2) gives rise to 

IYJ ICf=l amlr 
J'A44) = ,yr,” I-g’=, tl’,m 

IYJ WY’ =- 
Iwl” IK~‘Y 

IYmI* = jy p-m). 
r 

(B.5) 

Note, from (B.5), that when K is increased, J,,,(v(n)) 
becomes unbounded since m < r. Therefore, J,,, is 
unbounded for this case. 

(C2) m > r and r is odd. Let us also give 
a counterexample to show that Jr,, is unbounded 
for this case. Assume that 

v(n) = c&i(n) + c&&r - 1) - (2)‘ir/?hI(n - 2), (B.6) 

where CI > 0 and jI > 0. Then 

s(n) = h(n) * a(n) 

= cd(n) + ad(n - 1) - (2)“‘/?6(n - 2). (B.7) 

Substituting (B.7) into (B.2) yields 

lYml’ (2cP + ( - 1)“2m”j?“l’ 
JrAW) = ,y,,,,, 12a’ - 28’1” * WY 

Note, from (B.Q that when CI approaches /I, the 
numerator of J,,, never approaches zero since 

2”” > 2 but the denominator of J,,, will approach 
zero. Therefore, Jr,, is unbounded for this case 
when GI approaches /I. 

(C3) m > r and r is even. Alternatively, let 
r = 2s < m = I + s where I > s 2 1. Then (B.2) can 
be expressed as 

IYI+A~~ CCs'+"(nH2" 
J2s*l+A4n)) = jy2sll+s [Cg2yn)]l+” 

IY~+~I~~ CCs2”(4Cs2’W CCs”“(412” 
=ly2sll+s CCs2Wl”” [ICs2”(4Cs2*W 

IYI+~P CCs2’(41” CCs’+“W12 ’ 
= ly2sll+s [Cg’“(n)]’ { Cg’“(n)Cg”(n) I * (B’9) 

Note that the second term on the right-hand side of 
(B.9) is bounded by unity, i.e., 

(by Lemma 1). 

Moreover, 

(B.lO) 

1 CCs’+W12 
I 
’ < 1 

Cs2”(4Cs2’(4 ’ 

(by Cauchy-Schwarz inequality). 

Therefore, 

(B.ll) 

lYl+S12s max{J2s,~+sW4) = ly2sll+s, (B.12) 

which occurs only when the equality simulta- 
neously holds in both (B.lO) and (B.ll). Thus, we 
have completed the proof for statement (Sl). Next, 
let us find the optimum inverse filter 6(n) associated 
with max { J2s,l +s (u(n))} given by (B.12). 

The equality of (B.ll) holds if and only if 

s”(n) = k%‘(n), (B.13) 

where /? is an arbitrary nonzero constant. Without 
loss of generality, assume that /I > 0. It can be 
easily inferred, from (B.13), that 

s(n) = 
c&G9 I- s is odd, 

* crq(n), 1 - s is even, 
(B.14) 

where ~1 = pl/@-l) and q(n) is a binary sequence of 
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(0, l}. Substituting (B.14) into (B.lO) gives rise 
to 

CCs”ow 1 
[Cg’“(n)]’ = [Cq(n)]l-” ’ ” (B.15) 

Since Cq(n) > 1 and 1 > s, the equality in (B.15) 
occurs when Cq(n) = 1. In other words, q(n) = 

6(n - z) or g(n) = + cr6(n - T), where z is an un- 
known integer. Thus, we have completed the proof 
for statement (S2). 0 
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